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We develop a numerical model of the interaction between wind and a small-amplitude 
water wave. The model first calculates the turbulent flows in both the air and water 
that would be obtained with a flat interface, and then calculates linear perturbations to 
this base flow caused by a travelling surface wave. Turbulent stresses in the base flow 
are parameterized using an eddy viscosity derived from a low-turbulent-Reynolds- 
number k - E model. Turbulent stresses in the perturbed flow are parameterized using 
a new damped eddy viscosity model, in which the eddy viscosity model is used only in 
inner regions, and is damped exponentially to zero outside these inner regions. This 
approach is consistent with previously developed physical scaling arguments. Even 
on the ocean the interface can be aerodynamically smooth, transitional or rough, so 
the new model parameterizes the interface with a roughness Reynolds number and 
retains effects of molecular stresses (on both mean and turbulent parts of the flow). 

The damped eddy viscosity model has a free constant that is calibrated by compar- 
ing with results from a second-order closure model. The new model is then used to 
calculate the variation of form drag on a stationary rigid wave with Reynolds number, 
R. The form drag increases by a factor of almost two as R drops from 2 x lo4 to 
2 x lo3 and shows remarkably good agreement with the value measured by Zilker 
& Hanratty (1979). These calculations show that the damped eddy viscosity model 
captures the physical processes that produce the asymmetric pressure that leads to 
form drag and also wave growth. 

Results from the numerical model show reasonable agreement with profiles mea- 
sured over travelling water waves by Hsu & Hsu (1983), particularly for slower 
moving waves. The model suggests that the wave-induced flow in the water is irrota- 
tional except in an extremely thin interface layer, where viscous stresses are as likely 
to be important as turbulent stresses. Thus our study reinforces previous suggestions 
that the region very close to the interface is crucial to wind-wave interaction and 
shows that scales down to the viscous length may have an order-one effect on the 
development of the wave. 

The energy budget and growth rate of the wave motions, including effects of the 
sheared current and Reynolds number, will be examined in a subsequent paper. 
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1. Introduction 

J. A.  Harris, S. E.  Belcher and R. L. Street 

This paper is Part 2 of a series of three papers discussing the dynamics of the 
coupled turbulent air and water flows above and below water waves. Belcher, Harris 
& Street (1994, hereafter referred to as Part l),  developed an analytical model of the 
flow perturbations in the air and water caused by a moving water wave. As explained 
in Part 1, this analytical model is based on the approximation that the waves move 
slowly (as defined in Part 1). In this paper, Part 2, a numerical model is developed 
that is designed for slow, intermediate and fast moving waves and so allows solutions 
over the whole range of wind and wave speeds. 

One motivation for continued study of wind-wave interactions is the scatter in 
the variation of wave growth rates with c/u., derived from field and laboratory 
experiments (c is the wave phase speed and u*, is the air flow friction velocity). 
Is this scatter merely due to experimental variation and uncertainty, or can it be 
ascribed to variation of the growth rate with other parameters? There is a large 
body of theoretical evidence to suggest that there are several dimensionless par- 
ameters that have a primary influence on the wave growth rate. For example, many 
investigators ( e g  Miles 1957; Gent & Taylor 1976; Gent 1977; Riley, Donelan 
& Hui 1982; Al-Zanaidi & Hui 1984; Chalikov & Makin 1991; Belcher & Hunt 
1993) have demonstrated a significant variation of wave growth rate with kzo, where 
k = 2z/ l  is the wavenumber, 1 is the wavelength, and zo is the interfacial roughness 
length. 

Another parameter of potential importance to wave growth that has received little 
attention is the Reynolds number (e.g. based on the wavelength and friction velocity). 
Indeed, it is commonly assumed that air flow over ocean waves is aerodynamically 
rough and at high Reynolds number. It is of interest to examine the experimental 
field data of Snyder et al. (1981) to determine if this is actually the case. Assuming a 
logarithmic velocity profile in the air flow, the characteristic roughness length, ZO, and, 
hence, the roughness Reynolds number, Re, = Z O U , ~ / V ,  (where v, is the kinematic 
viscosity in the air), may be computed from the wind speed at a height of 5 m and 
friction velocity in the air tabulated in table 2 of Snyder et al. (1981). Out of 34 runs 
where it was possible to estimate the roughness Reynolds number in this manner, 
there are 6 smooth flow cases (Re,  < 0.12), 11 rough flow cases (Re, 2 2.4) and 17 
transitional flow cases (0.12 < Re,  < 2.4). Additionally, assuming the deep-water 
dispersion relationship holds, the Reynolds number, defined by R = uwJ/v,, was 
found to cover the range 66 < R < 9 x lo5 (Harris 1992). Thus, the field data of 
Snyder et al. (1981) suggest the Reynolds number, R, is not necessarily large and 
the water surface is more likely to be aerodynamically transitional (or even smooth) 
than fully rough! The Reynolds number is usually considerably lower in laboratory 
wave facilities and low Reynolds number effects may be more pronouced. Hence, 
a careful examination of the effects of Reynolds number on the flow seems to be 
warranted. 

Most previous models of wave growth have been uncoupled, i.e. they solve for 
the flow in the air only and apply boundary conditions at the air-water interface. 
It is usually assumed that the interfacial waves are irrotational, which thus ignores 
turbulent motions in the water. A more systematic approach is to solve simultaneously 
for the flow in the air and water and prescribe kinematic and dynamic coupling 
conditions at the interface. Such a coupled approach was used in Part 1 and is used 
here: it allows us to consider the effect of the turbulent motions in the water on the 
wave-induced flow field. 
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The numerical model presented here has two parts, the ‘base flow model’ and 
the ‘perturbation flow model’. The base flow model calculates the coupled tur- 
bulent flow in the air and water with a flat interface and the perturbation flow 
model calculates linear perturbations to this base flow that are caused by a travel- 
ling wave of low slope. This same approach was used in the numerical models of 
flow over hills developed by Walmsley, Taylor & Keith (1986) and Beljaars, Walm- 
sley & Taylor (1987). Here we exploit this linearized approach by using ideas for 
modelling the turbulent stress developed by Townsend (1980), Belcher, Newley & 
Hunt (1993), Belcher & Hunt (1993) and in Part 1. The main conclusion of their 
physical scaling arguments is that, although simple turbulence models based on lo- 
cal equilibrium between production and dissipation can be used to calculate the 
base flow, such an approach is neither appropriate nor accurate for the perturbed 
flow. Instead the perturbed flow has to be divided into inner and outer regions. In 
the inner region the wave-induced turbulence is in local equilibrium, and so it is 
appropriate to use an eddy viscosity model in this part of the flow. In the outer 
region, however, the turbulence is advected over the waves too rapidly to transport 
significant momentum and so an eddy viscosity model substantially overestimates 
the wave-induced stress. The wave-induced stress in the outer region can, how- 
ever, be calculated using rapid distortion theory, which shows that the perturbation 
stress is much smaller than in the inner region. Hence the wave-induced stresses 
in the outer region are approximately zero. These ideas are important because 
the choice of model for the wave-induced Reynolds stress determines the accuracy 
of the pressure, and hence wave growth, calculations (e.g. Townsend 1972, 1980; 
Abrams & Hanratty 1985; Belcher & Hunt 1993; Harris & Street 1994). Second- 
order closure models (e.g. Launder, Reece & Rodi 1975) capture these effects, but 
are computationally expensive and not without their own problems. The linearized 
approach we use here of calculating the base and perturbation flows separately 
allows us to incorporate the ideas from the scaling and use different turbulence 
models for the base and perturbation flows, thus formulating a ‘cheap’ second-order 
closure. 

Turbulent stresses in the base flow are approximated using the low- turbulence- 
Reynolds-number k - E model proposed by Launder & Sharma (1974), which can 
capture a whole turbulent boundary layer, including the viscous sublayer, and so is a 
generalization of the logarithmic profile specified in Part 1. This turbulence model is 
based on an eddy viscosity and was chosen here since Patel, Rodi & Scheuerer (1985) 
found that it was among the best of the near-wall turbulence models they evaluated 
in a variety of situations, including a boundary layer over a flat surface. This is 
encouraging because laboratory measurements made by Hsu, Hsu & Street (1981) 
and Cheung & Street (1988) show that the wave-averaged air flow over, and the 
wave-averaged water flow under, water waves closely resemble turbulent boundary 
layers over flat surfaces, which suggests that the Launder-Sharma turbulence model 
should produce reasonable profiles for the base flow. 

For the wave-induced Reynolds stress we incorporate the conclusions from the 
scaling arguments described above and develop a damped eddy viscosity model, which 
is similar in philosophy to the truncated mixing length model used by Belcher et al. 
(1993), Belcher & Hunt (1993) and in Part 1. In the new method the wave-induced 
stress is modelled using an eddy viscosity, derived from the Launder-Sharma k - E 

model, that is multiplied by a damping function, which equals one in the inner region 
and decays to zero in the outer region. One aim of this paper is to explore the success 
of this method and the sensitivity to the damping function. This turbulence model 
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explicitly uses the results of linear analysis and its generalization to a nonlinear model 
may not be straightforward. 

The remainder of the paper is organized as follows. The formulation of the model 
is outlined in $2 and an outline of the numerical solution is provided in $3. In $4, the 
model is tested by computing air flow over a sinusoidal hill and compared with Part 1 
and Belcher et al. (1993). Next, the model is compared with the coupled analytical 
model of Part 1 for a slow wave. Finally, the model is used for flow in a laboratory 
wind-wave facility; the results are compared with the measurements of Hsu & Hsu 
(1983). 

2. Formulation of the model equations 
The air-water interface is dependent on time t’ and is described by 

q(x1,t’) = acos [k (x l  - ct’)] , (2.1) 

where a is the wave amplitude. The right-handed coordinate system is arranged so 
that x1 is in the streamwise direction (aligned with the wind), x2 is in the vertical 
direction, and x3 is in the horizontal direction normal to the wind. The Reynolds- 
averaged flow is considered to be two-dimensional in both the air and the water in 
the (xl,x2)-plane. The wave slope, ak, is restricted to be small (i.e. d 0.1). 

Equations describing the base flow and perturbations to the base flow caused by the 
wave may be derived from the Navier-Stokes equations using a series of steps (e.g. 
see Norris & Reynolds 1975; Hsu et al. 1981; Al-Zanaidi & Hui 1984). The first step 
is to average the Navier-Stokes equations using the phase of the travelling surface 
wave as a reference. This phase-averaging process removes the turbulent velocity and 
pressure components but introduces unknown Reynolds stress terms which represent 
the effect of the turbulence on the phase-averaged flow. To provide closure it is 
necessary to introduce a model for the phase-averaged Reynolds stress; our choice 
is described in @2.1 and 2.2. Next, all the equations are non-dirnensionalized and 
transformed into a wavy coordinate system chosen so that the water surface becomes 
a coordinate line. The coordinate transformation is defined by 

t‘ = t ,  x1 = x, x2 = 2 + f ( z )q (x ,  t) ,  (2.2) 

where f ( z )  depends on the flow configuration (i.e. confined or unconfined) and is 
defined in 92.3. Following the transformation, the governing equations are expanded 
in powers of the wave slope, ak. For example, a flow quantity q(x, z, t )  is expanded as 

q(x, z,  t )  = q ~ ( z )  + iuk{gl(z)  exp[ik(x - ct)] + complex conjugate), (2.3) 

where q~ represents a base flow quantity and 41 is the complex amplitude of the 
perturbation flow quantity. Note that the addition of the complex conjugate in 
the above definition ensures that the actual quantity y(x , z , t )  is purely real. Terms 
involving the same powers of the wave slope are collected into separate equations. 
Equations involving terms of zeroth-order in wave slope describe the base flow, 
whereas the equations that involve terms of first-order in wave slope describe linear 
perturbations to the base flow caused by the wave. Since the analysis is restricted to 
small wave slopes, terms of higher order in wave slope are neglected. 

2.1. Base j?ow 

The fully developed base flows in the air (2 2 0) and water (Z  < 0) are governed 
by the phase-averaged momentum equations, with turbulence closure derived, as 
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explained in $1, from a low-turbulence-Reynolds-number k - E model (Launder & 
Sharma 1974). The resulting base flow equations are given in non-dimensional form by 
X-momentum: 

K -equation : 

&equation : 

where 

(2.7) 

The above equations have been made non-dimensional using a velocity scale u * ~ ,  
a length scale 9, which is defined in $2.3, and a time scale Yplu,,. Subscripts a 
and w refer to the air and water, respectively. Additionally, where required in the 
non-dimensionalization, the fluid properties, such as density and viscosity, are defined 
to be those in the air. Hence, the dimensional values of velocity, pressure, turbulent 
kinetic energy, dissipation rate and eddy viscosity are given by U ~ U , ~ ,  PBp,uSa, K & ,  
E B U ? ~  /9 and StB u , ~  9, respectively. This non-dimensionalization leads to a Reynolds 
number defined by R = u l a 9 / v a .  

In the Launder-Sharma model the eddy viscosity is 

st, = c,f,&/& (2.9) 

where the functions fl, f2, f, and turbulence Reynolds number are defined by 

-3.4 R K i  
f l = l ,  f2=1-0.3exp(-R+), f , = e x p l (  RT=-- .  

1 + R T / ~ O )  ?f EB 
(2.10) 

The function f, does not appear in the standard k - E model; Launder & Sharma 
(1974) introduced it to reduce the eddy viscosity in regions of low turbulence Reynolds 
numbers (e.g. near walls and the air-water interface). The values of the remaining 
constants are cp = 0.09, el8 = 1.44, ~2~ = 1.92, ok = 1.0, and 0, = 1.3, which are the 
same as for the standard high-Reynolds-number k - E turbulence model (we have not 
tuned this model in any way and all values of the constants are standard). For high 
turbulence Reynolds numbers, RT,  the functions f, and f 2  tend to unity, and the 
Launder-Sharma model reduces to the standard k - E model. 

The equations governing the base flow comprise a coupled sixth-order set of 
nonlinear ordinary differential equations. The order of the governing equations may 
be reduced by one since it is possible to integrate equation (2.4) for fully developed 
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flow (ie. constant dP~/a"x) to yield 

J .  A. Harris, S.  E. Belcher and R. L. Street 

(2.11) 

where t B ( Z )  is the dimensionless base flow shear stress and continuity of base flow 
shear stress across the interface has been used (see Appendix B). 

2.2. Perturbed ,flow 

The equations of first-order in wave slope that govern perturbations to the base flow 
are presented below in non-dimensional form : 
continuity: 

X-momentum : 

iXU1 + V; - if Ug = 0, (2.12) 

(2.13) 

f"K; +- 2f'Kg +.I.> x = (f + a> (-.K2Kl + :XfKg - ~ .x 

v:, 2f'B; i j  p l  ":, E; + (iy. +q)  + y + - 
(Jc 

+ G I ,  (2.16) 
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where 

+2u;izu;r + i 2-YVLP 2 f 1‘ ug u; 4 f I ug +- (- .x x G ,  = - 
R 

and the primes denote differentiation with respect to Z .  

(2.17) 

(2.18) 
2?q, uij’ 

R ’  

The non-dimensional 
wavenumber and wavespeed are defined by X = 2n9’/A and C = c/uea,  respectively. 
Equations (2.12)-(2.18) comprise a ninth-order set of coupled ordinary differential 
equations and are linear in the perturbation quantities (Ul, Vl, PI, KI, and El), since 
the base flow profiles UB(Z) ,  K B ( Z ) ,  and BB(Z)  and their corresponding derivatives 
are known from solution of the base flow equations. The perturbation pressure in 
the above equations represents the deviation from hydrostatic pressure relative to the 
mean water level (i.e. x2 = 0). 

2.2.1. Damping the eddy viscosity 
As explained in $1, the wave-induced Reynolds stress is modelled here using a new 

and computationally inexpensive model, the damped eddy viscosity model. Accordingly, 
the eddy viscosity derived from the Launder-Sharma k - E model is multiplied by 
a damping function, fd, which must equal one in the inner-region and must tend to 
zero in the outer region. Thus the eddy viscosity for the perturbed flow is 

V t ,  = f d V t B  = c p f p K i / E B ,  (2.19) 

where St, is the usual eddy viscosity derived from the k - E model and f p  = fJd. 

The damping function is chosen to be an exponential that must decay upwards on a 
distance that scales with the inner-region scale, hence 

(2.20) 

where Zl = c l d l / 2 ,  where 1 is the inner-region length scale defined in Part 1 by (4.3) 
for the air flow and by (4.5) for the water flow. Note that here the model is making 
explicit use of results from linear theory, namely the definition of 1. The coefficient cld 

is a model constant, whose value will be determined in $4 by comparing results for the 
perturbation shear stress with results from a second-order closure model. The form 
of this damping function is empirical and its value will be assessed by comparing 
with data in 94. 

Equations (2.12)-(2.18) also contain a perturbation eddy viscosity, V t , ,  that rep- 
resents the influence of the wave on the turbulence structure (to order ak). The 
relationship between Vtl and the perturbation quantities K1 and 81 results from an 
expansion of the original eddy viscosity definition and is given by 

V t ,  == (2cpfpKB/BB) KI - (cfifpK;/Ei) EI.  (2.21) 

Notice how this perturbation eddy viscosity is also damped through its dependence 
on f,. Expressions for the derivatives of O t p ,  vt1, f p  and f ,  are required and were 
obtained by differentiation of the appropriate definitions. 

The base flow and perturbed flow Reynolds stresses may be expressed in terms of 
the eddy viscosity and other flow quantities using the expansion procedure (Harris 
1992). For example, the base flow shear stress is defined by (r12)8 = -It, Uk while the 
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sinh(X - X Z )  
sinh X 

Confined uncoupled (CU) H variable forO<Z < 1 

sinh(X/2 + X Z )  if -; < z < 0 Confined coupled (CC) 2H variable 
sinh( X12) 

sinh(X/2 - X Z )  
sinh( X 12)  

i f O < Z  6 

Unconfined uncoupled (UU) 1 2n exp(-XZ) for 0 < Z < 1 

Unconfined coupled (UC) 21 471 exp(Xz) if -$  < z i 0 
exp(-XZ) if 0 < z < 1 

TABLE 1. Definition of length scales and coordinate transform functions for each flow 
configuration. 

perturbation shear stress is given by 

(r& = -i&’3f1?tp - i j tp  Ui - v,, Uk + f ’vtP U k / X .  (2.22) 

2.3. Flow conjgurations 
The numerical model can treat two flow configurations: corzJined flow, when walls 
are located a distance H above and below the interface (figure l a ) ;  and unconjined 
flow, when there are no confining walls such as in the ocean (figure lb).  When the 
geometry is confined the flow is forced by a pressure gradient in the air, whereas when 
the geometry is unconfined the flow is forced by specifying that the air flow relaxes 
to a constant stress layer far above the wave (see Appendix A). Each configuration 
may be solved in the air only using prescribed boundary conditions at the interface 
(uncoupled flow), or solved simultaneously in both the air and water using coupling 
conditions at the interface (coupled flow). This yields four possible model types. For 
convenience, each model type uses a different length scale, 2, to non-dimensionalize 
the governing equations. The model configuration and type determines the length 
scales and transform function, which are summarized in table 1. For the particular 
coupled confined case studied in $4, the water and air occupy equal heights ( H )  in the 
channel and the length scale is chosen as the overall channel height, 2H. Boundary 
and coupling conditions used for each configuration are presented Appendices A and 
B, respectively. 

3. Numerical solution 
3.1. Base f low equations 

For all the flow configurations the base flow governing equations reduce to fifth-order 
sets of nonlinear ordinary differential equations. Along with their boundary and 
coupling conditions, they comprise either two- or three-point boundary value problems 
(BVPsf, depending on whether the configuration is coupled flow or uncoupled flow. 
Defining AB = ( V / R  + Vt,/ck)KL and BB = ( Y / R  + Vt,/a&, the BVP may be 
expressed as a set of first-order ODES given by 
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tww- Air-water interface (Z = 0)  

FIGURE 1. Flow configurations of the numerical 

x, uo 

model: 
(a) confined coupled; (b)  unconfined coupled. 

and f may be assembled from the base-flow equations in 42.1 (see Harris 1992 and 
Harris & Street 1994). Equation (3.1) was solved using the finite difference method 
with Newton iteration for nonlinear BVPs described by Ascher, Mattheij & Russel 
(1988). The derivative term was represented using the one-step, second-order accurate 
midpoint method. This method avoids the singularity in the k - E equations at the 
boundaries, and also guarantees second-order accuracy for non-uniform grid spacings. 
After application of Newton’s method to the discretized form of equation (3.1), the 
resulting algebraic expressions were assembled into a banded block matrix. In the 
coupled problems, the coupling conditions were expressed in matrix form and included 
into the banded matrix. Given a suitable initial guess, this method gives quadratic 
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convergence to the solution and the base-flow problems typically converge in less 
than ten iterations. 

The confined flow configurations involve auxiliary conditions which must be sat- 
isfied by adjusting the pressure gradient(s). In such cases an iterative procedure is 
used in which the pressure gradients are adjusted based on the present solution (using 
an extrapolation method) and the problem re-solved until the auxiliary condition is 
satisfied. 

The solution of equation (3.1) for y yields profiles of Uo, KO, &, A0 and Bo, as well 
as profiles of the gradients Uh, Kh, and Eh. These gradient profiles are numerically 
differentiated using a cubic spline technique to yield the second derivatives required 
for input to the perturbed flow equations. 

Complete details of the solution of the base flow equations, including details of 
the finite difference method, generation of the Jacobian matrix needed for Newton’s 
method, assembly of the coupling and boundary conditions, and overall solution 
algorithm may be found in Harris (1992). 

3.2. Perturbed flow equations 

Although the equations governing the perturbed flow are linear, they are challenging 
to solve since the solution gradients are very steep near the interface and confining 
walls (if present). The governing equations may be written in the form 

A is the coefficient matrix and q is the inhomogeneous vector. Assembly of the 
equations into the above form requires several steps, as detailed in Harris (1992). 

The fourth-order-accurate, implicit two-stage Gauss method for linear problems 
described in Ascher et al. (1988) was used to solve equation (3.2). This scheme has 
similar advantages to the midpoint scheme used for the solution of the base flow 
equations. 

The continuity equation is not solved explicitly in the above formulation (instead, 
its derivative is used), and so terms in the continuity equation (2.12) were evaluated 
separately at each value of 2 and combined together to provide a convenient method 
of checking the accuracy of the numerical solution. It was found that a relative 
error (the maximum error in the continuity equation divided by the magnitude of 
the maximum term) of less than about was reached when the solution was 
grid-independent. For the cases presented in this paper, up to 800 grid points were 
used for the uncoupled cases and up to 1600 grid points were required in the coupled 
cases (800 each in the air and water). Non-uniform meshes were used in which the 
grid points were closely spaced near the solid boundaries (in the confined flow cases) 
and each side of the air-water interface, and distributed logarithmically away from 
the boundaries (or interface). . The Reynolds number was used as a parameter to 
determine the grid spacing (for higher Reynolds numbers the grid was more closely 
spaced near the wall(s) and the interface). In all simulations the base flow model 
and the perturbation model were solved on the same grid which helped avoid the 
possibility of interpolation errors when the base flow profiles were input to the 
perturbation model. Further details are given in Harris (1992). 

For calculations of the coupled perturbation flow cases the complex wave speed C 
is an unknown eigenvalue and must be chosen to satisfy the kinematic boundary con- 
dition (see Appendix B). An iterative procedure was used in which the wave speed was 
initially guessed, the coupled perturbation problem solved and the kinematic bound- 
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ary condition checked and used to adjust the wave speed after each iteration. Note 
that the Froude number (defined in Appendix B) is held constant during this iteration 
process. Using the wave speed computed from the deep-water dispersion relationship 
as an initial guess, convergence was typically achieved in about 5 iterations. 

4. Results and discussion 
We now present a sequence of results from the numerical model together with 

comparisons with other studies. First, the model is run for flow over a stationary 
rigid wave (a hill) in order to calibrate the new damped eddy viscosity model (i.e. to 
set the value of the parameter ad) and to evaluate the success of the damped model 
compared with the undamped model. Secondly, the model is compared with the 
coupled analytical model presented in Part 1. Finally, the model is compared in detail 
with the experimental measurements of flow over water waves performed by Hsu et 
al. (1981) and Hsu & Hsu (1983). 

4.1. Unconfined JIow 
In unconfined flow the parameter A? is constant, but the numerical model of the base 
flow retains two parameters, namely the Reynolds number, R, which characterizes 
the viscous stress, and the roughness Reynolds number, Re,, which characterizes the 
interface. In the analytical model of Part 1, the base flow is parameterized solely by the 
interfacial roughness length, zo, which characterizes either the height of the roughness 
elements (the ripples) or the depth of the viscous sublayer, when zo = O.llv,/u*,. 
Solutions were constructed in Part 1 on the assumption that 1/ ln(l/kzO) << 1, so that 
the roughness elements, or viscous sublayer, are much thinner than the inner-region. 
Thus for comparison with the analytical model for given k z ~  the two parameters of 
the numerical model must be chosen such that 

kzo = X R e , / R ,  (4.1) 

and R must be sufficiently large that the viscous sublayer is much thinner than the 
inner region (i.e. 2; >> 20); then the viscous stresses are negligible in the bulk of the 
inner region as assumed in the analytical model. 

It is of interest to focus on smooth flow and compare the depth of the viscous 
sublayer with the depth of the inner region. We can then determine how large 
the Reynolds number should be to meaningfully neglect viscous stresses. From 
equation (4.3) of Part 1, the dimensionless depth of the inner region in the air, 
2, = l J 9 ,  is defined implicitly by 

A?Z,[In(Z,R/Re,) - rcC] = 2 ~ ' .  (4.2) 

Consider a stationary wave (C = 0); which produces the smallest value of 2, (see 
figure 4 in Part 1). For the uncoupled unconfined case ( X  = 2.n) and smooth flow 
(Re, = O . l l ) ,  the above equation yields 2, = 8.54 x for R = 5 x lo3 and 
2, = 5.93 x for R = lo5. In law-of-the-wall coordinates, these values correspond 
to 2; = Z,R = 43 for R = 5 x lo3 and 2; = 590 for R = lo5. Thus, for the 
lower Reynolds number, the viscous sublayer (which has a depth of about z+ = 20) 
is almost half the inner-region depth and so cannot meaningfully be neglected. In 
contrast, for the higher Reynolds number example, the depth of the viscous region is 
only a small fraction of the inner-region depth and so may be neglected (as in the 
analytical model of Part 1). These two Reynolds numbers lie well within the range 
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of Reynolds numbers likely for ocean waves (see $1), and so molecular viscosity can 
play a role in wave growth, even in flow over the ocean. 

A similar argument also applies in the water; the difference is that the depth of the 
inner region is so small that molecular viscosity is almost always important (except 
possibly around C m 0). 

4.1.1. Shear stress profile over a stationary rigid wave 
In Part 1 it was shown that the imaginary part of the perturbation pressure at the 

interface, which is responsible for the bulk of the wave growth under most conditions, 
can be related to the real part of the perturbation shear stress profile (i.e. the part 
that gives the profile of the shear stress perturbation over the wave crest). So we now 
compare the perturbation shear stress profiles from the numerical model, calculated 
for a stationary rigid wavy wall (C = 0 and U1 = VI = 0 on the wall), with profiles 
calculated analytically by Belcher et al. (1993) and profiles computed by Newley 
(1986) using a nonlinear numerical model with the second-order Reynolds stress 
closure model of Launder et al. (1975) (see Belcher et al. figure 7). These comparisons 
will be used to select an appropriate value for the damping coefficient c(d (defined in 
(2.20)). In the present notation the parameters used by Belcher et a/. are ak = n/50 
and z0 /A = loe4. The parameters of the present numerical model were selected to 
be Re, = 10 (fully rough flow) and R = lo5, giving zo/L = Z ,  = 1.09 x lo-’ 
and 22 = 1086 >> 20, as required. In this case the actual combination of Re, and R 
chosen makes little difference. In the notation of the present model, the total shear 
stress perturbation, AT, is given by 

A T  = ~ “ ( 7 - 1 2 ) l  + (212)11, (4.3) 

where (rI2j1 is defined by equation (2.22) and ( ~ ~ 2 ) ~  = (1/R + Ctp)(i.XV1 + Ui - 
f ’ U h / X )  + St,Uh is the perturbation to the viscous shear stress, which is included 
in this comparison only for completeness; in this rough flow case, the viscous shear 
stress is much smaller than the Reynolds stress except very near surface. 

Profiles from the present model of the real and imaginary components of the 
shear stress perturbation above a sinusoidal hill are shown in figures 2(a) and 2(b) 
respectively. In each figure there are three curves: one corresponds to the undamped 
eddy viscosity model, and the other two correspond to the damped eddy viscosity 
model with ad = 1.0 and 2.0. Figure 2(a) shows that the undamped eddy viscosity 
model predicts large values of the real part of the perturbation shear stress in the 
outer region, whereas the new damped eddy viscosity model gives perturbation shear 
stresses that decay quickly in the outer region. The choice of the constant cld clearly 
has an effect on profiles of the shear stress. The choice ad = 1.0 severely damps the 
negative peak in the real part of the shear stress (figure 2a) and the positive peak in 
the imaginary part of the shear stress (figure 2b) and we interpret this value of ad to 
be too low. However, a value of = 2.0 is better as it leaves the negative peak in the 
real part of the shear stress intact, while still effectively damping the eddy viscosity 
in the outer region. 

Figure 3 shows a comparison of the computed shear stress profiles with the results 
of the numerical model of Newley (1986) and the analytical model of Belcher et 
a/. (1993). The comparison is given only near the interface and, for consistency 
with previously published results, the distance from the interface is expressed as z/ l , ,  
where /, is the inner-region length scale as defined by Belcher et al. (1993). Note 
that their definition yields Z, = l,/i = 1.58 x rather than the present definition 
(see Part 1) which gives Z, = 1.09 x There are two curves corresponding to 
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the Newley model since it is nonlinear and so gives different profiles at the crest and 
trough (figure 3a) and at the upwind and downwind slopes (figure 3b). The profiles 
at the trough and downwind slope in figures 3(a) and 3(b), respectively, have had 
their signs reversed for comparison purposes. The difference between the profiles at 
the crest and trough or at the upwind and downwind slope then provides a measure 
of nonlinear effects. 

Figure 3(a) shows that the real part of the perturbation shear stress predicted by 
the undamped numerical model is in good agreement with the Newley model for 
z / l ,  5 1. However, as noted above, the undamped model drastically overpredicts the 
perturbation shear stress for z / l , 2 2  (i.e. in the outer region) since the equilibrium 
turbulence model is inappropriate. The proposed damped eddy viscosity model, with 
cld = 2.0, shows remarkably good agreement with the much more sophisticated (and 
computationally expensive) second-order Reynolds stress model used in Newley’s 
model, Notice that damping the eddy viscosity makes virtually no difference to the 
values of the shear stress perturbation at the wavy surface (in agreement with the 
analysis of Belcher et al. 1993) and both the damped and undamped models are in 
excellent agreement with the second-order closure model very near the surface. The 
analytical model of Belcher et al. (1993) also shows good agreement with the real part 
of the perturbation shear stress. The profile from the theory is truncated at 2 = 1, 
for reasons explained in Belcher et al. (1993). 

Figure 3(b) shows the imaginary part of the perturbation shear stress predicted by 
the present numerical model, which shows reasonable agreement with the second- 
order closure model predictions. Unfortunately, damping the eddy viscosity actually 
worsens the agreement between the present model and the second-order closure 
model in the outer region. The profiles of Im(Az) predicted by the analytical theory 
of Belcher et al. (1993) show poor agreement with the second-order closure model in 
the near surface region. The nonlinear effects are more pronounced on the wave slopes 
(i.e. for Im(Az)) where there is about a 30% difference between the maximum negative 
values (at z/la NU 0.45). Indeed, at the sloping part of the wave the boundary layer 
experiences either an accelerating or a decelerating pressure gradient and the rapid 
distortion effects might be expected to operate right down to the surface (Belcher et 
al. 1993). Thus, the shear stress profiles at the upwind and downwind wave slopes 
are more difficult to model accurately than those at the wave crest or trough. Perhaps 
a more sophisticated damping function is needed to model this part of the flow. 
Fortunately, the growth rate of the wave is related to the real part of the perturbation 
shear stress so that this discrepancy does not affect the ability of the models to predict 
realistic wave growth rates. 

4.1.2. Form drag on a stationary rigid wave 
The growth rate of the wave is related to the form drag on the wave, and there has 

been much recent interest in calculating the form drag on a stationary rigid wave, 
i.e. a hill (e.g. Belcher et al. 1993; Wood & Mason 1993; Xu & Taylor 1995). Belcher 
et aE. (1993) show that using the mixing-length model throughout the flow results 
in form drag predictions that are too large by a factor of about two (depending on 
the value of kzo). The uncoupled unconfined version of the present numerical model 
was used to compute the form drag on a sinusoidal hill for comparison with previous 
results. For these runs combinations of R and Re, were selected to give fully rough 
flow (Re, > 2.4) and Z,+ >> 20 over a range of values of kzo. The model was run with 
no damping (i.e. the isotropic eddy viscosity model over the full domain) and with 
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FIGURE 3. Perturbation shear stress profile abovc a sinusoidal hill: (a)  at the crest; (b)  at the upwind 
slope. -, Undamped model; damped model, t l d  = 2; - - -, theory with truncated mixing length 
(Belcher et al. 1993) ; X, numerical model with second-order closure (Newley 1986) (a) at crest (b)  
at upwind slope; +, numerical model with second-order closure (Newley 1986) (a )  at trough (b)  at 
downwind slope (see text). 
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damping, using ad = 0.5, 1 and 2. In each case the imaginary part of the perturbation 
pressure at the surface was computed and used to evaluate the dimensionless form 
drag perturbation (per unit width in the x3 direction) on the hill, which is given by 

AF/(p,u?oa2k) = nIm(P1). (4.4) 

The values of R, Re, and the resulting form drag computed by our model are 
summarized in table 2. The values of Z: range from 168 for the lowest Reynolds 
number to 10150 for the highest Reynolds number, so that the condition 2: >> 20 is 
satisfied in all cases. Table 2 shows that the values of the form drag are dependent to 
some extent on Ed. As ad decreases from a3 (no damping) to O(1) the form drag also 
decreases, but for ad < 1 the drag coefficient is approximately constant; in fact, the 
computed drag coefficients are almost identical for ad = 0.5 and ad = 1. However, as 
demonstrated in $4.1.1 above, ad = 2 appears to give the best profiles of shear stress. 

The computed drag coefficients are plotted as a function of the normalized rough- 
ness length, kzo, in figure 4, along with the data presented in Part 1, figure 11. 
The results from the undamped model are similar to, but somewhat lower than, the 
theoretical and numerical results obtained using mixing-length throughout the flow 
(see Part 1). These curves all considerably overestimate the form drag. But the 
damped eddy viscosity model, with %d = 1 and 2, yields essentially identical results 
to the numerical model of Newley (1986), which incorporates second-order closure; 
and is consistent with the truncated mixing-length analytical model of Belcher et al. 
(1993) for values of 1/ ln(l/kzo)50.14. The form drag calculated with the analytical 
model deviates from the present computations and the results of Newley (1986) for 
1/ In( l/kzo) 3 . 1 4  since the thickness of the inner region then becomes large and 
so one of the assumptions of the analysis ceases to be valid. For instance, when 
l/ln(l/kzo) = 0.15, kl,/(2ic2) = 0.243 (from equation (4.3) in Part 1) which is no 
longer small compared with unity. 

Ideally, the numerical model predictions would extend to lower values of kzo; 
however, while this is possible, to do so requires very high Reynolds numbers and 
a very large number of grid points for grid-independence. On the other hand, the 
analytical model is ideally suited to low values of kzo and so the theory and numerics 
are complementary in this respect. 

In Part 1, figure 11 showed a value of the form drag measured by Zilker & 
Hanratty (1979). Unfortunately, this value was incorrectly plotted (we are indebted 
to Kees Mastenbroek for pointing out this error). This error has prompted us to 
look more carefully at these data and at the effect of Reynolds number on form 
drag. Zilker & Hanratty (1979) report values of ;UbH/v,  and kvu/ut which imply 
Ub/u. = 19.8 and hence the Reynolds number of their experiment is R = 2960. In 
addition they report smooth flow (Re, = O.ll), X = k H  = 2n, ak = 0.157 and 
C = 0. They also measured the surface pressure perturbation and calculated a drag 
coefficient: CD = A F / ( $ p U i A )  = 1.26 x which implies AF/(p,u?a2k) = 62.8 
(using ub/u. = 19.8). This value of the drag coefficient is plotted in figure 5,  
which shows the variation of drag coefficient with Reynolds number, R, for smooth 
flow (Re, = 0.11). Also shown on figure 5 are the drag coefficients obtained from 
the confined uncoupled version of the numerical model (using both damped and 
undamped closures) and results from the theoretical model with zo = 0.1 lv/u.. 

At high Reynolds numbers ( R z 2  x lo4) the damped numerical model agrees well 
with the theoretical model, but as R decreases the numerical model shows a striking 
increase compared with the theory. Presumably this increase is because viscous stresses 
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FIGURE 4. Drag coefficient on a sinusoidal hill: - W -, undamped model; -.-.-.-, damped model, 
ad = 2; -..-.-..-, damped model, t l d  = 1; -, theory with truncated mixing length (Belcher et a!. 
1993); - - -, theory with mixing length throughout flow (see Part 1); 4, nonlinear numerical model 
with second-order closure (Newley 1986); 0, nonlinear numerical model with mixing length closure 
(Newley 1986); A, numerical model (Townsend 1972) ; V numerical model (Townsend 1980). 

become dynamically important in the lower part of the inner region and increase the 
total stress, hence, according to the physical picture developed in figure 5 of Part 1, 
the non-separated sheltering that induces the form drag is increased. The damped 
numerical model (ad = 2) gives a drag coefficient of 64.8 when R = 3142, which is 
amazingly close to the 62.8 measured by Zilker & Hanratty (1979) for R = 2960. 
In contrast, the undamped numerical model yields 84.7, almost 50% too large. The 
excellent agreement between the damped model and the experimental datum occurs 
because the numerical model includes the dynamical effect of viscous stresses in the 
inner region. This plot provides compelling evidence that the drag (and hence also the 
wave growth) is dependent on Reynolds number (in addition to the roughness and 
dimensionless wave speed). Notice that the range of R where the drag shows strong 
variation is within the range of R inferred from the Snyder et al. (1981) experiments, 
and so we expect that the growth rate of ocean waves will also depend on R. 

4.1.3. Comparisons with the coupled theory of Part 1 
In this section the predictions of the unconfined coupled numerical model are 

compared with the results of the coupled theory presented in Part 1. The first 
comparisons are given for the case CO = 5 and kzo = which is a 'slow wave' 
(as defined in Part 1) with k1,/(21c2) = 0.154. The parameters of the numerical model 
were chosen to be R = 3.02 x lo6 and Re,. = 2.4, giving kzo = X R e , / R  = Thus 
the base flow profile is fully rough and 2: = 11 800 (> 20), as required. For this case 
the theory gives kh, = 0.344 and a velocity scale U O , / U , ~  = 22.0 (see 55.3.1 in Part 
1). The coupled base flow profile computed by the unconfined coupled model yields 
a velocity scale of UO,/U*, = 19.0; the difference reflects the difference between the 
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FIGURE 5. Effect of Reynolds number on the drag coefficient on a smooth sinusoidal hill: 
- -, undamped model; -.-W.-, damped model, c(d = 2; -, theory with truncated mixing 
length (modified theory of Belcher et al. 1993); A, experimental data of Zilker & Hanratty (1979). 

R 

R Re, 

1.38 x lo6 10 
4.55 x 105 10 
1.88 x 105 LO 

4.95 x 104 10 
2.95 x 104 10 
1.90 104 10 
1.30 x 104 10 
9.33 x 103 10 

9.05 x 104 10 

4.54 x 10-5 
1.38 x 10-4 

6.94 x 10-4 
1.27 x 10-3 
2.13 x 10-3 
3.30 x 10-3 

6.74 x 10-3 

3.35 x 10-4 

4.83 x 

undamped 
80.47 
75.45 
71.28 
67.49 
63.94 
60.48 
57.18 
54.05 
51.11 

A F l ( p d , a 2 k )  

Ed = 2.0 Ed = 1.0 
38.67 34.69 
40.70 36.46 
42.11 37.65 
42.92 38.22 
43.03 38.24 
42.60 37.76 
41.78 36.95 
40.67 35.90 
39.44 34.71 

ad = 0.5 
33.71 
35.66 
37.05 
37.78 
38.00 
37.65 
36.97 
35.93 
34.71 

TABLE 2. Computations of the form drag on a sinusoidal hill. 

logarithmic base flow profile used in the theory and that computed by the present 
model. For the purposes of comparison the velocities and stresses were normalized 
using Uo,, rather than u , ~ ,  since this approach helps to remove the effect of slightly 
different base flow profiles. 

Figures 6(a) and 6(b) show profiles of the horizontal velocity perturbation in the air 
above the interface. The velocity profiles at the wave crest (figure 6a) predicted by the 
numerical model and the theory are in good agreement except very near the interface. 
At the surface, the theory yields Re(U1) = 16.99 at kz = lop5, whereas the numerical 
model predicts Re(U1) = 6.11 at kz = 0, which is very close to the surface velocity 
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expected for an irrotational water wave (Re(U1) NN C + Us = 6.1). Such differences 
between the theory and the numerics in the near surface region could be due to their 
different treatment of the interface. The numerical model computes right down to 
the interface, whereas the theory stops at the roughness height, kzo. Since the velocity 
profile is so steep directly above the interface, this small difference in height makes a 
relatively large difference in the predicted surface velocity. 

The velocity profiles at the upwind wave slope (figure 6b) exhibit some differences. 
The numerical model predicts a peak in Im(Ul)/[Uo,/u,o] of 0.623 at kz = 7.3 x 
and then a sharp drop across the viscosity-affected region near the surface to match 
the near irrotational velocity (i.e. Im( Ul) = 0) of the water wave. The theory predicts 
a peak value in Irn(U1)/[Uo,/u,J of 0.558 at kz = (in reasonable agreement with 
the magnitude of the peak predicted by the numerics) but no drop back to zero at 
the interface. 

Figure 7 shows profiles of the perturbation shear stress computed by the numerical 
model (both damped and undamped) compared to the coupled theory of Part 1, in 
the near interface region on either side of the interface between -0.4 < kz < 0.4; the 
computational domain is -2n < kz < 2n. The height of the inner regions in the air 
and the water are kz, = 0.0492 and k z ,  = 0.0050, respectively, and the theoretical 
shear stress profiles are truncated at these points (for reasons explained in Belcher 
et al. 1993). The shear stress profiles at the wave crest (figure 7a)  computed using 
the undamped model show extremely large values in the outer regions, most notably 
in the water where the stress reaches a peak of 0.125 at kz = -LOO! However, the 
damped model shows a shear stress that decays to zero, as it should in the outer 
region. The magnitudes of the peaks in the real part of the shear stress on either 
side of the interface from all models are in good agreement. Figure 7(h)  shows that 
damping also has a lesser effect on the stress profile over the upwind slope, with 
similar trends as found for the hill flow in 54.1.1. 

Although the profiles of the shear stress at the crest predicted by the theory and 
numerics demonstrate good agreement in both figure 3(a)  and 7(a), the values of the 
shear stress at the smface show considerable differences, as evidenced in figure 8. 
This figure shows a plot of the surface shear stress at the wave crest predicted by 
the damped model compared with the coupled theory as a function of dimensionless 
wave speed, C ~ / U % ~ ,  for various values of the roughness length, kzo. For these 
computations the parameters of the numerical model were selected to be Re, = 2.4 
and R = 3.02 x lo5, 3.02 x lo6 and 3.02 x lo7, giving kzo = and 
respectively. The numerical model consistently predicts lower values of surface shear 
stress than the coupled theory. Additionally, the theory predicts the surface shear 
stress to decrease with decreasing kzo, whereas the numerics predict an increase with 
decreasing kzo. However, both the theory and the numerics show that the surface 
shear stress decreases as a function of increasing wave speed. The apparent upturn 
in the surface shear stress predicted by the theory for large wave speeds should be 
viewed with caution: it is associated with the assumptions of the theory breaking 
down (e.g. at kzo = and C ~ / U * ~  = 10 the value of klu/(2ti2) is 0.336, which is 
quite large). These differences may be due to the different treatments of the interface 
region. It is suprising that the differences are so large. 

4.2. CorlJined $ow 
4.2.1. Comparisons with experimental wind-wave data 

The coupled confined version of the numerical model is now applied to simulate the 
flow above and beneath mechanically generated water waves of frequency 1 Hz. Such 
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FIGURE 6. Profile of horizontal velocity perturbation above a water wave with R = lo5, Re, = 10 
(so that kzo = lo-') and C = 5: (a)  at the wave crest; ( b )  at the upwind slope. -, Damped 
numerical model, &j = 2 ;  - - -, theory with truncated mixing length (Part 1). 
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RGURE 7. Profile of perturbation shear stress above and below a water wave with R = lo5, Re, = 10 
(so that k z ~  = lop5) and C = 5: (a) at the wave crest; ( b )  at the upwind slope. -, Damped 
numerical model, cld = 2; -.-, undamped numerical model; - - -, theory with truncated mixing 
length (Part 1). 



240 J. A. Harris, S. E.  Belcher and R. L. Street 

FIGURE 

UC numerical model, 
UC numerical model. 
UC numerical model. 
Coupled t'----- 
Coupled t 
Coupled t..uuL,, 
Coupled t'-----. 
P n n n l P A  t 

kzo = 
kzo = 
kz, = 

'. 
b, 4 

ColU*a 

8. Surface shear stress perturbation at the wave crest as a function of dimensionless 
speed, C / U , ~ ,  and roughness length, kzo. 

wave 

Run U ,  u., c /U,  ak R=2Hu,,/v a+ = . X / R  
(m s-') (m s-') 

1 1.37 0.043 1.14 0.106 5560 1.40 10-3 
2 1.72 0.056 0.91 0.107 7240 1.08 10-3 
3 2.12 0.073 0.74 0.105 9440 8.26 10-4 
I 2.40 0.085 0.65 0.107 1 1020 7.08 10-4 
4 2.92 0.110 0.53 0.115 14220 5.49 10-4 

TABLE 3. Parameters of Hsu & Hsu (1983) experiments. The dimensionless wavelength based on 
2H is 3' = 2kH = 7.80 ( H  = 1.97 m). 

waves were studied in the Stanford Wind Water-Wave Research Facility (SWWWRF) 
by Hsu & Hsu (1983), who measured profiles of velocily and shear stress in the air 
at free-stream wind speeds of U ,  = 1.37, 1.72, 2.12 and 2.92 m s-I. 

Table 3 summarizes the parameters of the experiments performed by Hsu & Hsu 
(including the case of Hsu et al. 1981, denoted by Run I). The runs cover the ranges 
of dimensionless wave speeds and inverse Reynolds numbers (a+ = kv,/u.J that are 
particularly sensitive to the choice of Reynolds stress model (Harris & Street 1994). 
Thus they represent a challenging test of the present numerical model. 

One difficultly in simulating these experiments is that Hsu & Hsu (1983) obtained 
values for the friction velocity from time-averaged velocity profiles. The 1 Hz me- 
chanically generated wave causes these time-averaged profiles to be contaminated 
by second-order (in uk) perturbation components as noted in Part 1, $2. Evidence 
for this contamination may be seen in Hsu & Hsu figure 2 which shows that the 
time-averaged velocity profiles exhibit 'super smooth' behaviour when plotted in 
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Run R Um/u., Uslu., U J U ,  C ~ c / u = a l e x p c  

1 5560 24.72 0.7580 0.0307 28.2 36.3 
2 7240 25.34 0.7794 0.0308 23.1 27.9 
3 9440 25.95 0.8009 0.0309 19.5 21.4 
I 11020 26.32 0.8122 0.0309 17.1 18.2 
4 14220 26.92 0.8340 0.0310 14.3 14.2 

TABLE 4. Computed parameters for Hsu & Hsu (1983) experimental runs 

law-of-the-wall coordinates; this behaviour does not occur in the absence of the 
mechanically generated wave component. Thus, the friction velocities quoted by Hsu 
& Hsu are not consistent with the definition of the base flow in the present model. 
The most significant effect of this error is manifested in the values of C / U . ~  quoted by 
Hsu & Hsu. The following correction procedure is adopted: (i) calculate a Reynolds 
number, R, using the measured value of ue0 ; (ii) solve the numerical model for the 
base flow using the calculated value of R;  (iii) obtain the value of U,/U., (equal to 
the dimensionless free-stream velocity, Uo, at mid-channel height in the air) from the 
results of the computation; and (iv) calculate C = C / U , ~  = ( C / U ~ ) ( U ~ / U , ~ ) ,  where 
c/Um, given in table 3, is measured experimentally and is assumed to be reliable. Of 
course, this procedure could be continued to produce corrections to the Reynolds 
number. However, this was not considered necessary since the results of the numerical 
model are insensitive to such small changes in the Reynolds number. Hsu & Hsu 
state that in all cases the flow is hydraulically smooth (Re, < 0.12). This is not strictly 
true for the corrected u * ~  values, but the computations of Harris & Street (1991) show 
that, at the low wind speeds used by Hsu & Hsu (1983), the flow is hydraulically 
smooth except for Run 4 where it is transitional. 

Table 4 summarizes the values of U J U * ~  and other parameters computed for the 
Hsu & Hsu runs using the coupled confined base flow model. As can be seen, the 
values of C = C / U , ~  obtained from the model using the above procedure differ from 
the experimental values quoted by Hsu & Hsu (1983), especially for the low wind 
speeds. Table 4 also shows the computed surface drift velocities, U J U * ~ ,  where Us 
is the mean velocity at the air-water interface (i.e. U&Z = 0)). Converting these 
values to U J U ,  using the computed values of U , / U * ~  reveals that the drift velocity 
is almost exactly 3% of the free-stream wind speed for all runs. This computed value 
is consistent with the experimentally observed values of about 3% of the free-stream 
wind speed reported by Shemdin (1976), which gives us further confidence in the 
numerical model of the base flow. 

An example of the base flow velocity profiles computed by the confined coupled 
model for a free-stream wind speed of U, = 2.92 m s-l (Hsu & Hsu run 4) is 
shown in figure 9. The profiles in the air and the water are shown in separate plots 
since the velocities in the water are considerably smaller than those in the air. The 
non-zero velocity at the interface (i.e. the drift velocity) may clearly be seen. As 
mentioned in Appendix A, there is no net flow in the water since the water channel 
in the SWWWRF is finite in length and, consequently, the drift current beneath the 
interface induces a return flow along the channel bottom. The base flow profiles for 

. the other wind speeds are qualitatively similar. 
The next step in the simulations of the Hsu & Hsu experiments involved running 

the confined coupled version of the perturbation model using the tabulated Reynolds 
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FIGURE 9. Computed profile of confined coupled base flow in the SWWWRF for U, = 2.92 m s-' 

(Hsu & Hsu run 4): (a) in the air; ( b )  in the water. 

numbers and dimensionless wave speeds as parameters (along with Re, = 0.11, 
X = 7.80 and old = 2.0). The initial guess for Re(C) was chosen so that the final 
converged value of Re(C) was equal to the required value, shown in table 4, to within 
less than 1%. 

Figures 10 and 11 show profiles of horizontal and vertical velocity perturbations 
in the vicinity of the air-water interface over a range of wind speeds compared to 
the experimental values measured by Hsu & Hsu (1983). The experimental data were 
obtained from figures 3 and 4 in Hsu & Hsu (1983), converted to real and imaginary 
components and converted to the present notation using the experimental values of 
ak and the computed values of Uoo/u*, given in table 4. 

Figure 10 shows reasonable agreement between the modelled and measured hori- 
zontal velocity perturbations at both the crest (a )  and the upwind slope (b). There 
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FIGURE 11. Profiles of the vertical velocity perturbation in the vicinity of the air-water interface 
computed with the damped numerical model(curves) and comparisons with the experimental data 
of Hsu & Hsu (1983)(symbols): (a) at the wave crest; ( b )  at the upwind wave slope. 
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are significant changes in the shape of the horizontal velocity perturbation as c /U ,  
(and, to a lesser extent, R )  vanes, which are well-captured by the model. For the 
three slower-moving waves ( c /U ,  = 0.53, 0.65 and 0.74) and close to the interface 
(2 50.5), the model agrees with the data to within about 25%. For the faster-moving 
waves (c/Uoc = 0.91 and 1.14), the qualitative agreement is good, but the quantitative 
agreement deteriorates. In all cases the agreement between the experimental data 
and the model is better near the surface than in the outer part of the flow. The 
measurements were made at a relatively short fetch of 13 m, so that the base flow 
boundary layer might be expected to be well developed up to a height of about 
h - 13/50 FZ 0.25 m, which implies that kh - 1. Hence the outer part of the flow may 
not be well developed. 

As mentioned by Hsu & Hsu, the experimental data do not seem to approach the 
values at the surface that would be given by an irrotational water wave (i.e. Re( U l )  = 
C and Im( U1) = 0 at 2 = 0). However, the data are consistent with the model, and 
the model shows that the water motions are close to irrotational (except very near the 
interface), and that the velocity profiles in the air have a huge shear in the immediate 
vicinity of the water surface. For example, when c / U ,  = 1.14, Re(U1) = -12 just 
above the interface but Re( U1) = 29 just below the interface. 

It is unlikely that these rapid velocity variations are associated with a critical layer, 
where U@) = C, because the present calculations show that they persist even for 
c/Um > 1, when there is no critical level. In fact, much of the shear seems to lie in a 
zone that scales with the molecular viscosity: in all runs the shear is located below 
2 50.005, which corresponds to z+550 (using a representative value of R = 10000). 
Another viscous length scale is the thickness of the Stokes layer, Z, = ( w / ~ v , ) - ~ / ~  
(where w is the wave radian frequency), which gives zf = 11 in the Hsu & Hsu 
experiments. To test this idea, figure 12 shows the effect of Reynolds number on 
model profiles of the horizontal velocity pertubation for c /U ,  = 0.91. The Reynolds 
numbers are chosen to be R = 7240 (the actual case) and R = 50000 and the depths 
of the inner region, Z,, critical layer, 2, and viscous sublayer, Z,,, are all marked. 
Changing R changes the base flow so the velocity is scaled by u I~ /Um,  which has the 
values 25.34 and 29.88 for R = 7240 and 50000 respectively. The height of the Stokes 
layer is constant and lies at Z = 1.1 x The large change in Reynolds number 
does not greatly influence the magnitude of the velocity perturbations. But most of 
the shear in Re( Ul) does occur within the viscous sublayer and moves considerably 
closer to the interface at the higher Reynolds number. In contrast, the shear in 
Im( U,)  seems to remain at the Stokes layer height for both Reynolds numbers. From 
this plot it is also apparent that the critical layer does not play a role in causing the 
rapid variation in velocity near the interface, at least for this run. This plot suggests 
that molecular viscosity is important in coupling the air and water motions. 

Figure 1l(a) shows the measured and predicted profiles of the real part of the 
vertical velocity perturbation. The trends in the comparison are similar to those 
found for the horizontal velocity, with good quantitative agreement near the interface 
(250.05) and for the three slower-moving waves. The numerical model does not 
give the observed negative values of Re( V,)  for c/Um = 1.14, possibly because the 
corrected value of c / u + ~  is so different to the measured value in this case (i.e. the 
true value of C may lie somewhere in between the corrected and uncorrected values). 
Figure l l (a)  shows that the coupled numerical model is in close agreement with 
irrotational water wave theory, which gives Re( Vl) = 0 at the interface. 

Figure 1l(b) shows a comparison of calculated and measured profiles of the imag- 
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FIGURE 12. Effect of Reynolds number on profiles of the horizontal air flow perturbation above a 
water wave ( c / U ,  = 0.91) computed with the damped model: -, R = 7240 (Hsu & Hsu run 2); 
- - -, R = 50000. The labels Z,,  2, and Z ,  mark the depths of the inner region, critical layer and 
viscous sublayer, respectively. 

inary part of the vertical velocity perturbation. There is good qualitative agreement, 
but the numerical values are systematically larger than the measured values, despite 
the small scatter in the data. The reason for these systematic differences is not clear: 
it could be due to uncertainty in the value of uea, which influences the value of C as 
well as the scaling of the profiles. The numerical model predicts Im(V1) = -C at the 
interface (in agreement with irrotational water wave theory). 

The performance of the numerical model in predicting the measured perturbation 
velocity profiles for this challenging problem is encouraging. However, model valida- 
tion using only perturbation velocity profiles for comparison is not really sufficient 
for a wave growth model since, away from the interface, the velocity profiles are 
determined largely by inviscid dynamics and are not particularly sensitive to the 
perturbation Reynolds stress model (Belcher & Hunt 1993). 

So figure 13 shows a comparison of the predicted and measured perturbation shear 
stress profiles for the cases studied by Hsu & Hsu (1983) and Hsu et ul. (1981). The 
experimental data were obtained from figure 7 in Hsu & Hsu (1983), converted to 
real and imaginary components and scaled by uk( Um/u,a)2 to convert to the present 
notation. Figure 13(a) shows that for the two slower-moving waves the coupled 
numerical model agrees with the measured Re[(rlz)l] profiles to within about 10% 
throughout the inner regions, i.e. ZzO.07. In the outer regions we do not expect 
good agreement because the turbulence is changed by rapid distortion, which is 
not modelled in detail in the damped eddy viscosity model. For the faster-moving 
waves, the agreement deteriorates. This is suprising because as c/Um increases so the 
inner-region depth increases and we might expect good agreement over the whole 
depth of the air. Instead when c /U ,  = 1.14 the model shows a large negative 
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stress perturbation, whereas the data show a near zero perturbation. This trend is 
observed in the comparisons of the velocity profiles and suggests that the model may 
not adequately model waves moving faster than the wind. Figure 13(b) shows the 
computed profiles of Im[(r12)1], which do not agree as well with the experimental 
data. The numerical model tends to underpredict the peak in the measured Im[(rlz)J 
component near the interface over the whole range of c / U x .  For the two highest 
values of c/Um the numerical model also predicts negative values of Im[(rlz)l] which 
are not observed experimentally. It is likely that this discrepancy in the predicted and 
measured profiles of I ~ [ ( T - ~ ~ ) ~ ]  is due to the limitations of the isotropic eddy viscosity 
model for the perturbation shear stresses in the parameter range around a, z lop3 
as well as for the other reasons outlined above. 

For a hydraulically smooth interface the surface value of (rl& must be zero and 
the model profiles show this behaviour. However, in most cases the measured profiles 
show a consistent increase near the interface which appears to contradict this result. 
The measured data are not generally close enough to the interface to capture this 
behaviour in the inner region except in the case c / U ,  = 0.65 where a decrease in the 
measured value of Im[(rlz)l] near the interface is apparent. 

5. Summary and conclusions 
We have developed a numerical model of the fully developed turbulent air flow 

above and water flow below a travelling surface wave. First the model computes 
the base flow (i.e. the flow over and under a flat interface), and secondly the model 
computes linear perturbations to the base flow caused by a wave of low slope, 
i.e. akzO.1 .  The model accounts for the fully turbulent drift current in the water, 
and there is full dynamical coupling to the air flow above. The model uses a 
new damped eddy viscosity turbulence parameterization for the wave-induced stresses, 
which accounts for the regions of rapid distortion of the turbulence. In addition the 
model accounts for effects of low turbulence Reynolds number, which has allowed 
us to assess the role in wind-wave interactions of the viscous sublayer around the 
interface. 

An advantage of decomposing into base and perturbation flows is that we were 
able to incorporate into a new damped eddy viscosity model the results of scaling 
arguments developed by Townsend (1980), Belcher et al. (1993), Belcher & Hunt 
(1993) and in Part 1. Thus the wave-induced Reynolds stress was modelled using an 
eddy viscosity that was multiplied by a damping function, f d .  The scaling arguments 
indicate that f d  is a function of Z / I ,  where 1 is the inner-region length scale (defined in 
§$4.3 and 4.5 of Part l), and that in both the air and water f d  -+ 0 as lZ/ZI --+ co and 
fd + 1 as Z/E -+ 0. Thus the model makes explicit use of results from linear analysis. 
Here f d  was taken to be an exponential decay, with a damping coefficient c(d (see 
equation (2.20)). We then reasoned that, according to the linear analysis developed in 
Belcher & Hunt (1993) and Part 1, if the stress perturbation profile at the wave crest 
is modelled accurately, then the form drag and wave growth should also be accurate. 
Hence %d was calibrated by comparing computed profiles of the stress perturbation 
with profiles computed by Newley (1986) using a second-order closure. It is gratifying 
that the values of the form drag on a rigid stationary sinusoidal wave computed 
with the new model then agree well with the results computed with the second-order 
closure, particularly when the form drag is so sensitive to closure (Belcher et aE. 1993; 
Xu & Taylor 1995). Some aspects of the flow are clearly sensitive to the choice of 
f d  and ad, and further work needs to be done to improve the modelled values of 
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FIGURE 13. Profiles of the shear stress perturbation in the vicinity of the air-water interface 
computed with the damped numerical model(curves) and comparisons with the experimental data 
of Hsu & Hsu (1983)(symbols): (u)  at the wave crest; (b)  at the upwind wave slope. 
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the imaginary part of the shear stress, but the form drag, and hence wave growth 
rate, is rather insensitive to the value of ad provided it is small enough to damp 
effectively outside the inner regions. Further work also needs to be done to formulate 
a nonlinear version of the model. 

We have shown that in the air flow when R 5 2  x lo4 the depth of the viscous 
sublayer is comparable with the depth of the inner region, which is where turbulent 
stresses are dynamically important. It is clear that in such conditions viscous stresses 
may be dynamically important. In the water flow, the depth of the inner region is 
comparable to, or even less than, the depth of the viscous sublayer for most of the 
values of R observed. Hence, viscous stresses may even dominate over the turbulent 
stresses in the wave-induced water flow, at least when the turbulence is shear driven 
(rather than from wave breaking). The effect of viscous sublayers is manifested in 
the variation of the form drag with R. When R Z 2  x lo4 the form drag agrees well 
with the analytical model of Belcher et al. (1993), which assumes that viscous stresses 
play no dynamical role in the inner region. But when R 5 2  x lo4, which is within 
the range observed in the wind waves observed in the field by Snyder et aE. (1981), 
the form drag increases rapidly with decreasing R (by a factor of about two as R 
drops by a factor of ten). With the new model the calculated value of the form drag 
agrees with the value measured by Zilker & Hanratty (1979) to within 5%, but this 
is almost 50% larger than the value computed without accounting for the dynamical 
effects of viscosity. It would be extremely interesting to have more data to compare 
with this aspect of the model. 

The numerical model was compared in detail with the measurements of Hsu & Hsu 
(1983), which were made over waves that spanned the intermediate and fast-moving 
regimes and a case where the wave travelled faster than the wind. We showed that the 
values of u + ~  reported by Hsu & Hsu (1 983) were not the same as the base flow values 
that are needed as input to the model and so we described a correction procedure. It 
seems likely that other comparisons between models and data need to adopt a similar 
procedure. For the intermediate cases, c/Um = 0.53, 0.65 and 0.74, the profiles of 
Re{ Vl} and Re(zl) computed with the model agreed well with the data, particularly 
in the near-wall region, Z 50.05 m. A possible explanation for the poorer agreement 
above this height is that the measurements were made at a relatively short fetch of 13 
m, so that the outer part of the flow may not have been be well developed. Another 
possibility, in the stress comparisons, is that in the outer region of the wave-induced 
flow the turbulence is subjected to rapid distortion, which we have modelled as being 
zero in the damped eddy viscosity model. Hence the wave-induced stress profiles have 
small changes that are not accounted for explicitly in the present turbulence model. 
For the waves travelling faster than the wind, the model does not agree so well with 
the measured profiles. The agreement deteriorates as c/Um increases, so it may be 
that the present model is lacking some physical process that is important for these 
very fast-moving waves. 

The present approach to modelling wind waves has forced us to focus on the 
near-interface region. The scaling arguments put forward by Belcher et al. (1993) 
show that effects of turbulent stresses on the wave-induced flow are confined to inner 
regions. And in the present paper we have shown that a role can be played by 
molecular viscosity, which is dynamically important in even thinner viscous sublayers 
either side of the interface. Evidence of the importance of these viscous layers is in the 
profiles of wave-induced streamwise velocity, which have a large shear confined within 
the viscous sublayers. These findings are of significance to high-resolution numerical 
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simulations, such as direct numerical simulation or large-eddy simulation, which 
would have to account for these extremely small-scale processes. The comparisons 
with the Hsu & Hsu data show that these considerations are relevant to wind-ruffled 
mechanically generated waves. But what can these results tell us about pure wind- 
generated waves? In such flows the interface is highly contorted so that it is not clear 
how to define the interface down to scales of millimetres. It is certainly extremely 
difficult (impossible?) to make measurements within the viscous sublayers in the real 
flow. Perhaps the main value of this work is the most general conclusion, namely 
that the details of smallest scales of the air and water flows in the close vicinity of 
the interface can have an order-one effect on the dynamics of the dominant wave 
(perhaps by doubling its growth rate). We shall quantify some of these effects in more 
detail and make further comparisons with the theory of Part 1 in Part 3 of our study 
(Belcher, Harris & Street 1996). 
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Appendix A. Boundary conditions 
The boundary conditions for the base flow equations are summarized in table 5. 

Note that the definition of 2 is different in each case (refer to table 1). For 
confined flow the confining surfaces are considered to be smooth and no-slip boundary 
conditions are used: U, = K g  = E g  = 0. For unconfined flow the far-field boundary 
conditions are assumed to be given by the logarithmic law so that the turbulent 
kinetic energy and dissipation rate are given by the wall functions used in standard 
k - E models, which may be expressed as (ASCE Task Committee on Turbulence 
Models in Hydraulic Computations 1988) 

KB = ~/(Pc ; /~) ,  E g  = l / ( ~ S ~ / ~ l Z l )  at the domain limits. (A 1) 

Uncoupled flows also require boundary conditions at the air-water interface, where 
the base flow velocity is assumed to be the surface drift velocity, Us, which is taken to 
be 3% of the free-stream wind speed as measured by Shemdin (1976). The interfacial 
roughness is characterized by a roughness length, zo, which, for simplicity, is taken 
to be the same in the air and the water (Kondo 1976). Harris & Street (1991) and 
Harris (1992) show that the interfacial values of K B  and E g  (denoted by K ,  and &) 
in the air and water may be computed by 
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Case 

cu 

cc 

uu 

uc 

Domain Lower b.c. Upper b.c. Auxiliary condition 

TABLE 5.  Summary of boundary conditions for the base flow solution. 

where 2, = z o / 9 .  Then K ,  and ES are different on the air and water sides of the 
interface since the roughness Reynolds number in the air is about twice that in the 
water. In confined flow, auxiliary conditions are required to determine the pressure 
gradients. The pressure gradient in the air is determined by the auxiliary condition 
that the velocity at the upper boundary vanishes. For coupled flow the pressure 
gradient in the water is chosen to produce no net flow in the water, since the water 
channel is finite in length and the drift current must recirculate. 

A summary of the perturbed flow boundary conditions is presented in table 6.  For 
confined flow the perturbation quantities vanish at the confining walls according to the 
no-slip condition. For uncoupled flow the boundary conditions on the perturbation 
velocities at the interface are given by (Hsu et al. 1981) 

U1 = C + Us, Vl = i(U, - C) (A 4) 

K1 and 8, were set to zero at the air-water interface, which corresponds to specifying 
a constant roughness along the wave. We use this condition because Gent & Taylor 
(1976) and Belcher & Hunt (1993) have shown that a varying zo along the wave has 
only a second-order effect on the flow. In unconfined flow, far from the interface 
the perturbed quantities are forced to decay exponentially. The solution technique 
outlined in $3 only uses the derivative of the continuity equation; thus, to ensure 
the continuity equation returns zero (and not some other constant) the continuity 
condition is imposed at the boundary. 

at Z = 0. 

Appendix B. Coupling conditions 
The kinematical and dynamical coupling conditions are transformed and expanded, 

then terms of order zero and one in the wave slope are selected for the base and 
perturbed flow (Harris 1992). 

The zeroth-order component of the kinematical and dynamical conditions for the 
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Case Domain Lower b.c. Upper b.c. 

u, = c + us 
V, = i(U, - C) 

Mu1 - if Uk + V; = 0 

u1 = 0 
V ,  = o  

cu O d Z G 1  K1 = O  K I  = O  
81 = o  8, = o  

u1 = o  u1 = o  
v, = o  Vl = 0 
Kj = O  K1 = O  
E, = o  El = o  

cc + Z G i  1 

i X U 1  - ifUl, + V,' = 0 

u1 = C + us 
V, = i(U, - C) 

iXU, - ifUk + V; = 0 

u; = x u ,  
V; = XV1 

B, = o  E; = x81 

u; = .xu, 
v; = XVI 

B; = xB, 

uu o<z-<1 K1 = O  Ki = X K 1  

u; = -xu, 
v; = - X V ,  

E; = -xE, 
uc -;-<z-<; K ;  = - X K I  K ;  = X K 1  

i X U l  - ifUk + V; = 0 

TABLF 6. Summary of boundary conditions for the perturbed flow solution. 

base flow yield 

where [q] denotes the value of q on the air side of the interface minus the value of 
q on the water side of the interface. The second result can be written u . ~  = @"u*~,  
which was used to derive equation (2.11). For a smooth interface the turbulent kinetic 
energy and dissipation rate are zero at the interface. Rough interfaces are modelled 
by prescribing fixcd values of turbulent kinetic energy and dissipation rate on either 
side of the interface. These values are determined from equations (A2) and (A3), 
which give values on the air side if Y = P = 1, and values on the water side if 
V" = vw/vo and P = pw/pa.  

Nine coupling conditions are necessary for the perturbed flow at the air-water 
interface. Continuity of velocity and shear stress at 2 = 0 give 

[ U l ] = [ V , ] = O ,  B 3 + i j l B  ( i ~ v l + U U ; - f ' U ~ / X ) + ~ i j t , U ~  =0, (B2) "" 1 I 
while continuity of normal stress yields 

-(PI + 9 j q X . F ' ) )  + 2 P  - + ft, v; = 0 at z = 0. (B 3 )  [ (: ) I  
Continuity of normal stress involves a forcing, Y/(XF2) ,  where F = u. , / (g9) ' /2  is 
a Froude number, which arises from the coordinate transform since the pressure is 
defined relative to the mean water level. This forcing term drives the perturbation 
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flow. The mass conservation condition must be enforced across the interface, which 
yields 

[iXUI + Vl - i f ~ L ]  = 0 at z = 0. (B 4) 

The water surface roughness is held fixed along the wave surface so that K1 and 
81 vanish in both the air and water at the interface. In the uncoupled flow, the 
wave speed C is a purely real quantity and is specified, but in the coupled flow, C is 
complex and is an eigenvalue of the solution, determined so that the solution satisfies 
the kinematic boundary condition, V1 = i( Us - C). This requires some iteration on 
the wave speed as explained in $3.2. 
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